CARDIOVASCULAR DISEASE IN THE DEVELOPING WORLD AND ITS COST-EFFECTIVE MANAGEMENT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Thomas A. Gaziano, MD MSc | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
At the beginning of the 20th century, cardiovascular disease (CVD) was responsible for less than 10% of all deaths worldwide. Today, that figure is about 30% and CVD is the leading cause of death worldwide with about 80% of the burden now occurring in developing countries (Figure 1).1-3 This issue of Cardiology Rounds explains the epidemiological transition that has made CVD the leading cause of death in the world, assesses the status of the transition by region, and shows the regional differences in the burden of CVD. Further, this issue reviews the cost-effectiveness of various interventions addressing the most relevant causes of CVD morbidity and mortality. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 1: CVD Compared to Other Causes of Death Worldwide | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
THE EPIDEMIOLOGIC TRANSITION | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Over the last two centuries, the industrial and technological revolutions and the economic and social transformations associated with them have resulted in a dramatic shift in the causes of illness and death. Prior to 1900, infectious diseases and malnutrition were the most common causes of death. With improved nutrition and public health measures, they have gradually been supplanted by CVD and cancer deaths in most high-income countries. Omran developed an excellent model of the epidemiological transition dividing the transition into three basic stages: pestilence and famine, receding pandemics, and degenerative and man-made diseases (Table 1).1-4 Olshansky and Ault added a fourth stage, delayed degenerative diseases.5 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Stages of The Epidemiological Transition and its Global Status, by Region | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The stage of pestilence and famine is characterized by the predominance of malnutrition and infectious disease and by the relative infrequency of CVD. In this situation, CVD is responsible for only ~ 10% of deaths, mostly attributed to rheumatic heart disease and cardiomyopathies due to infection and malnutrition. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The stage of receding pandemicsis marked by increases in wealth that lead to better availability of food, improved sanitation, and access to vaccines and antibiotics. The results are lower rates of communicable, maternal, perinatal, and nutritional diseases, and an increase in cardiovascular risk factors, particularly hypertension. These changes, along with increased lifespan, eventually lead to a greater incidence of CVD, particularly hemorrhagic stroke. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The stage of degenerative and man-made diseasesis characterized by dramatic lifestyle changes in diet, activity levels, and smoking that set the stage for the emergence of atherosclerosis. The average lifespan increases to beyond 50 years and mortality from CVD, in particular, and other non-communicable diseases now exceeds mortality from malnutrition and infectious diseases. The predominant form of CVD is coronary heart disease (CHD), but ischemic stroke also emerges as a significant cause of mortality and morbidity. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In the stage of delayed degenerative diseases, CVD and cancer continue to be the major causes of morbidity and mortality. Due to widespread primary and secondary prevention efforts, however, the age-adjusted CVD mortality tends to decline. Congestive heart failure (CHF) prevalence increases due to improved survival of those with ischemic heart disease and life expectancy increases to greater than 70 years. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
New trends suggest that the United States (USA) could be entering a fifth as-yet-unnamed phase of the epidemiologic transition, characterized by an epidemic of obesity. Although rates of CVD fell 2% to 3 % per year through the 1970s and 1980s in most developed countries, the rate of decline has slowed. In the USA, physical activity continues to decline as total caloric intake increases. Overweight and obesity are escalating at an alarming pace, while rates of type 2 diabetes, hypertension, and lipid abnormalities associated with obesity are on the rise. This trend is not unique to developed countries only. According to the World Health Organization (WHO), more than 1 billion adults worldwide are overweight and 300 million are clinically obese. Even more disturbing are increases in childhood obesity, leading to large increases in diabetes and hypertension. If these trends continue, age-adjusted CVD mortality rates could increase in the USA and other countries in the coming years. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
While countries tend to enter these stages at different times, the progression from one stage to the next tends to proceed in a predictable manner, with both the rate and the nature of CVDs changing over the course of the transition. The USA and most other developed economies, for example, spent most of their early history in the first stage and then progressed through the next 3 stages over the course of the last century and a half. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Japan is unique among high-income countries because the transition started later, but proceeded much more rapidly. In the early part of the 20th century, stroke rates increased dramatically, eventually becoming the highest in the world by the middle of the century. CHD rates in Japan, however, have not risen as sharply as in other industrialized countries and have remained lower. Since the 1970s, stroke rates have declined dramatically, but there are indications of a possible recent increase in CHD. The historically lower heart disease rates may be at least partly attributable to genetic factors, but it is more likely that the average plant-based, low-fat diet and resultant low cholesterol levels have played a more important role. If CHD is increasing, it could be related to changes in dietary habits that Japan is currently experiencing with increased dairy and fat consumption.6 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
STATUS OF THE EPIDEMIOLOGIC TRANSITION IN 2004 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The World Bank groups countries based on economic and geographic variation. The high-income countries are those with a gross national income (GNI) per capita of greater than or equal to $9,200. The rest of the low- and middle-income countries are divided according to geographic region. The 6 developing regions are: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The stage of the transition for each region varies widely (Table 1). With roughly 840 million people, the USA and the other established market economy countries currently comprise a little more than 15% of the world’s population. Rapid declines in CHD and stroke rates since the early 1970s indicate that these countries are in the fourth phase of the epidemiologic transition, the stage of delayed degenerative diseases. In these countries, CHD rates tend to be higher than stroke rates and overall CVD deaths are about 30% of the total with a rate of 320 deaths per 100,000 population. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
As a result of the epidemiological transition outlined above, CVD is the leading cause of death in all World Bank developing regions, with the exception of SSA.1 Most developing regions appear to be following a similar pattern as developed countries with an initial rise in stroke (EAP and SSA) and then a predominance of CHD; however, the transition has occurred at a more compressed rate than in the high-income countries. Between 1990 and 2020, CHD alone is anticipated to increase by 120% for women and 137% for men in developing countries, compared to age-related increases of between 30% and 60% in developed countries.7 The INTERHEART study suggests that the same risk factors found in the developed countries also appear to account for the rapid increase in the developing countries.8 This case-control study, conducted in 52 countries with over 15,000 cases of myocardial infarction (MI), demonstrated that smoking, diabetes mellitus, hypertension, abdominal obesity, dyslipidemia, physical inactivity, and poor fruit and vegetable intake had a population attributable risk (PAR) of 90%. The PAR for current and past smokers was 36%. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The EAP region appears to be straddling the second and third stages with apparent regional differences in CVD rates. A north/south gradient has emerged, with higher CVD rates in northern China than in southern China. The ECA region is firmly at the peak of the third transition stage with CVD representing 60% of all deaths. Croatia, Belarus, and the Ukraine saw an increase of 40% to 60% in CHD death rates between 1988-98 (Figure 2). The ECA region has a rate of 690 CVD deaths per 100,000, more than double that of the high-income countries. Within the region of the MNA, the majority of the Middle Eastern crescent appears to be entering the third stage of the epidemiologic transition; increasing economic wealth has been accompanied by a rapid increase in CVD. As a whole, the LAC region also seems to be in the third stage, but this region, as defined by the World Bank, includes all of South America. Residents of some of these countries are still at risk of contracting malaria and dengue fever; as a result, those portions of the region are still in the first transitional phase. Despite large regional variations, HIV/AIDS-plagued SSA remains largely in the first phase of the epidemiologic transition. Heterogeneity is also apparent throughout the rest of the developing world - even within countries (eg, some regions of India appear to be in the first phase of the transition, whereas others are in the second or even the third phase). | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 2: Percentage change in ischemic heart disease death rates in people age 35-74, 1988-98, selected countries | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SOCIAL AND ECONOMIC IMPACT | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
While no detailed data exist on the direct economic burden of the individual risk factors, the costs of CVD treatment in developing countries is significant and appears similar to that in developed countries. In South Africa, for example, 2% to 3% of the gross domestic product (GDP) was devoted to the direct treatment of CVD or roughly 25% of the South African healthcare expenditures.9 An indication of possible future expenditures in developing countries is also provided by current expenditures in developed countries. For example, the USA spent an estimated $368 billion relating to direct and indirect costs of CVD in 2004.10 In 1998, US$109 billion was spent on hypertension, or about 13% of the healthcare budget.11 In 2004, an estimated $26 billion was spent for the care of CHF patients. Studies are limited, but suggest that obesity related diseases are responsible for 2% to 8% of all healthcare expenditures in developed countries.12 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
While the disease burden and the social costs of CVD are high, the resources devoted towards healthcare are extremely scarce. The GNI per capita of developed countries ($27,000) is nearly 25-fold that of developing countries ($1,100). Further, developed countries devote twice as much of its GNI (10%) to healthcare compared to low- and middle-income countries (6%). This results in about a 40-fold difference between developed and developing countries in funds devoted to healthcare.13 This is further compounded by the fact that a high proportion of the CVD burden occurs earlier among adults of working age in developing countries. In 5 of the countries surveyed (Brazil, India, China, South Africa and Mexico), conservative estimates indicated that at least 21- million-years of future productive life are lost because of CVD each year.7 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
COST-EFFECTIVENESS ANALYSIS (CEA) OF INTERVENTIONS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There are many interventions with strong evidence for significant reductions in morbidity and mortality associated with CVD, but few intervention trials have been carried out solely in developing countries. As a result, estimates of cost effectiveness ratios have been extrapolated to the developing world based on changes in key input prices.14 This process is limited, however, by the fact that both the underlying epidemiology and the costs can be quite different across countries and regions. The following section reviews results of interventions based on models using prices and epidemiological data from the World Bank developing regions. The analyses comply with the Disease Control Priorities Project (DCPP) Guidelines for Authors of July 2003.15 Only the costs related to the intervention itself and CVD events are included in the model. Costs include personnel salaries, healthcare visits, diagnostic tests, and hospital stays, according to DCPP September 2004 draft of unit costs.16 Indirect costs, such as work loss or family assistance, are not included in the analysis. Drug costs are from the International Drug Price Indicator Guide.17 All costs unless otherwise specified are in $US. For a detailed explanation of the methods for the following analyses, please refer to the DCPP Working Papers Series on Cardiovascular Disease.18 Results are reported in costs per quality-adjusted life-year (QALY) gained. This section reviews only drug-related interventions; however, smoking cessation interventions through taxation policies, physician education, and advertising regulations are also extremely cost-effective. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CORONARY HEART DISEASE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Acute MI | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Four incremental strategies were evaluated for the treatment of acute MI (AMI) and compared to a strategy of no treatment as a base case. The 4 strategies were: aspirin (ASA); ASA and beta-blocker (BB[atenolol]); ASA, BB, and streptokinase (SK); and ASA, BB, and tissue plasminogen activator (t-PA). Doses for the ASA and SK were those used in ISIS-2. The BB regimen was that of ISIS-1 and the t-PA dosing was that used in GUSTO-I. All patients receiving the medications had relative risk reductions in the risk of dying from AMI. Patients receiving the thrombolytics also faced the complication of increased risks of major bleeds and hemorrhagic strokes. Two further sensitivity analyses were completed comparing SK in those aged over 75-years and those aged less than 75-years, and whether or not patients received the intervention more than 6 hours or less than 6 hours from onset of symptoms, since treatment effectiveness diminishes over time. The incremental cost per QALY gained for both ASA and BB interventions was less than $25 for all 6 regions. Costs per QALY gained for SK were between $630-$730 across the regions. ICERs for t-PA were around $16,000/QALY gained compared to SK. Minor variations occurred between regions due to small differences in follow-up care based on regional costs. Giving SK in less than 6 hours reduces the incremental cost per QALY gained to around $500 compared to over $1200 per QALY gained if given after more than 6 hours. Equivalent effects are seen when SK is given to those aged less than 75 ($600/QALY) compared to those aged greater than 75 ($1300/QALY). Other criteria that would improve the cost-effectiveness of thrombolytics, but were not analyzed include location of the infarct (anterior) or the presence of a new left bundle branch block. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Secondary prevention | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Four incremental strategies were evaluated for the treatment of acute MI (AMI) and compared to a strategy of no treatment as a base case. The 4 strategies were: aspirin (ASA); ASA and beta-blocker (BB[atenolol]); ASA, BB, and streptokinase (SK); and ASA, BB, and tissue plasminogen activator (t-PA). Doses for the ASA and SK were those used in ISIS-2. The BB regimen was that of ISIS-1 and the t-PA dosing was that used in GUSTO-I. All patients receiving the medications had relative risk reductions in the risk of dying from AMI. Patients receiving the thrombolytics also faced the complication of increased risks of major bleeds and hemorrhagic strokes. Two further sensitivity analyses were completed comparing SK in those aged over 75-years and those aged less than 75-years, and whether or not patients received the intervention more than 6 hours or less than 6 hours from onset of symptoms, since treatment effectiveness diminishes over time. The incremental cost per QALY gained for both ASA and BB interventions was less than $25 for all 6 regions. Costs per QALY gained for SK were between $630-$730 across the regions. ICERs for t-PA were around $16,000/QALY gained compared to SK. Minor variations occurred between regions due to small differences in follow-up care based on regional costs. Giving SK in less than 6 hours reduces the incremental cost per QALY gained to around $500 compared to over $1200 per QALY gained if given after more than 6 hours. Equivalent effects are seen when SK is given to those aged less than 75 ($600/QALY) compared to those aged greater than 75 ($1300/QALY). Other criteria that would improve the cost-effectiveness of thrombolytics, but were not analyzed include location of the infarct (anterior) or the presence of a new left bundle branch block. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
FAT INTAKE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In India, per capita consumption of major fats and oils has increased significantly during the last 30 years.42 In 1958 it was 5.62 Kg per year which increased to 5.79 in 1961, 5.23 in 1966, 5.85 in 1971, 5.21 in 1976, 6.48 in 1981 and 6.97 in 1986 (r=0.64, p=0.168). This consumption is much lower than in EEC countries (38.98), USA (39.72), Canada (34.83) and Japan (19.84). However, diet of 17% of rural poor does not include any edible oil and about 5% of the population consumes nearly 40% of the available fat, hence the increase in the fat consumption is mainly in urban middle and upper classes where CHD is rampant. Reliable data regarding the consumption of Indian ghee (clarified butter) are not available as this fat is produced and consumed as a household item. It has been reported that 27.5% of the total milk production is utilized for its production and in 1990, 750 thousand tonnes of Indian ghee was consumed, i.e., 0.91 kg/person/year.42 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
An important and unstudied aspect of the fat intake is effect of various Indian cooking habits on fatty acid composition. Shallow-frying, which is widely prevalent in Indian kitchens, can lead to oxidation of fatty acids and formation of cholesterol oxides which are toxic to arterial endothelium.43 Deep-frying increases the temperature of oils to very high levels and can change chemical composition of the fats. Trans-fatty acid composition of various Indian fats is not well defined although it has been reported in high amounts in hydrogenated oils.43 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SMOKING AND TOBACCO USE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
WHO has estimated that at present tobacco causes 2.5 million premature deaths per annum world-wide that increased more than ten-fold since 1950.1 The mortality from tobacco will rise to 3.0 million during the 1990's and to 10 million in 2020's.1 With consumption projected to rise still further, the actual figures may be greater. According to World Bank, tobacco related pulmonary and cardiovascular diseases have become major community health problems in South Asia. Tobacco is already killing more than these estimates and GBD Study has reported that in the year 2000, tobacco caused 4.9 million deaths of the total 55.8 million deaths per annum worldwide.4 Cigarette and tobacco smoke is known to contain many toxic and vasoactive substances. Bidi (tobacco rolled in Diospyrus melanoxylon leaf) is the commonest form of tobacco smoked in India. Studies have shown that bidi smokers face similar risk of hypertension and CHD as cigarette smokers despite the fact that tobacco content is less than a quarter. This may be because of smoking habits- as bidi smoke is required to be inhaled more frequently per minute than a cigarette to keep it burning- as well as reason that bidi may contain yet unidentified toxic substances per unit weight.44 The smoking habit became epidemic with the growth of the cigarette-manufacturing industry. It is thus a recent, widespread and unnatural behaviour, compared to older ones. In the whole population smoking should be reduced in amount and in frequency with the final aim of eliminating the habit completely. Low-tar, low-nicotine cigarettes offer no alternative solution to the abandonment of smoking so far as the heart is concerned. Habits of smoking and use of smokeless tobacco consumption need to be curtailed. The problem of environmental tobacco exposure cannot be underestimated.4 One of the most convincing studies of the harmful effect of passive smoking was conducted in China among non-smoking women with CHD and matched controls. A nearly 2-fold greater odds of CHD among women who were exposed to tobacco at work persisted after adjustment for other risk factors, and a linear trend with the amount of tobacco exposure was observed.45 In both urban and rural subjects in India smoking and tobacco use is widely prevalent. Our studies have shown that 39% urban men26 and 51% rural men35 in Rajasthan either smoked or consumed tobacco in some form. Other Indian epidemiological studies report smoking prevalence in adult men between a low of 10% (rural Punjab)34 to a high of 80% (rural Haryana).31 Smoking rates are significantly lower in women but consumption of tobacco in other forms is highly prevalent.46 Tobacco production which is surrogate for its consumption is increasing at a very high rate in India. According to Economic Survey of India39 (1994-95), tobacco production registered a growth of 2.4% in 1991-92, 5.9% in 1992-93 and 21.3% in 1993-94. The tobacco production was 75.5 thousand tonnes in 1971, 100.2 in 1981, 91.9 in 1986, 115.8 in 1991 and 124.2 in 1993. According to Human Development Report,40 in India tobacco consumption per adult person per year in kg was 0.7 in 1974-76, 0.8 in 1990 and is projected to increase to 0.9 in the year 2000. This is in contrast to established market economies where there is a decline in cardiovascular disease mortality and the tobacco consumption (kg/year) is projected to decline from 2.9 in 1974-76 to 2.2 in 1990 and 1.8 in the year 2000. Epidemiological studies in India confirm that smoking is an independent risk factor for CHD. We reported a multivariate odds ratio of 2.50 (95% confidence interval 1.09-5.73) for smoking and electrocardiographic Q-wave prevalence in rural men,47 and 1.23 (0.79-1.93) in urban men.26 Pais et al reported similar odds for bidi-smoking and CHD risk in a case-control study.48 Smoking is also an independent risk factor for hypertension.49 Tobacco is an important component all CHD prevention and control programs. In India also, the present findings emphasise that tobacco avoidance and cessation must be an important component of CHD prevention strategies. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 5: Indian Hypertension Prevalence Studies (BP160/95)50,51 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
HYPERTENSION | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Studies that report prevalence of hypertension in Indian populations have been reviewed.50,51 Epidemiological studies to determine blood pressure (BP) norms in Indians were performed in early 40's and 50's using ill-defined methodology. Uniformity was achieved after publication of a WHO report on proper measurement techniques of BP and criteria for diagnosis of hypertension in 1959. 52 Accordingly hypertension was defined as systolic BP >160 mm Hg and/or diastolic BP >95 mm Hg, or those on medical treatment for high BP and most Indian studies used these guidelines (Table 5). In urban populations earlier studies of Dotto (1949)53, Dubey (1954)54 and Sathe (1959)55 showed hypertension prevalence of 1.24%, 4.24% and 3.03% in populations of Calcutta, Kanpur and Bombay respectively. Later studies that also used WHO guidelines have shown a steadily increasing trend in hypertension prevalence. Recent studies from Ludhiana,56 Jaipur57 and Mumbai58 show prevalence of more than 10%. The prevalence of hypertension defined by JNC-V criteria also shows a steep increase from 6.2% in 1959 (Delhi)22 to 30.9% in 1995 (Jaipur)57 and 43.0% in 1999 (Mumbai)59. In rural populations also there is a steady increase in prevalence of hypertension. Padmavati (1959)22 in Delhi reported prevalence of 1.99%, Shah (1959)60 in Bombay reported a prevalence of 0.52% and Gupta (1977)29 in Haryana reported a prevalence of 3.57%. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 6: Recent Indian Hypertension Prevalence Studies (BP 140/90) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Subsequent studies have shown gradually increasing hypertension prevalence in rural areas of India. Recent studies in North India have reported a higher prevalence of 7.08% in Rajasthan.61 In South India the prevalence has been reported as high as 17.8% in recent years.62 Thus, there has been a significant increase in hypertension prevalence in India since the 1950's. The increase is significantly more in urban subjects than in the rural and is associated with a significant increase in mean systolic BP. The prevalence of hypertension defined by US Fifth Joint National Committee and World Health Organisation criteria has been reported among some urban Indian populations (Table 6).63 Gupta et al (1995)57 reported hypertension in Jaipur in 30% men and 33% women aged >20 years. Gupta et al (1999)58 reported hypertension in 44% men and 45% women in Mumbai, Joseph et al (2000)64 reported it in 31% men and 41% women in Trivandrum, while Mohan et al (2001)27 reported an age-adjusted prevalence of 14% in Chennai. Gupta et al (2002)28 reported its prevalence in 36% men and 37% women in Jaipur. Anand (2000)65 reported hypertension in 34.1% middle-class executives in Mumbai but after multiple blood pressure measurements it was confirmed in 26.8% male and 27.6% female officers. These findings are in consonance with other regions of Asia where it has been reported that, at any one time, about half of all individuals have high blood pressure.2 Among the rural populations hypertension prevalence using recent criteria was reported by Gupta et al (1994)61 in subjects aged >20 years. Hypertension was present in 24% men and 17% women. Prevalence of hypertension diagnosed on the basis of multiple blood pressure measurements was reported by Malhotra et al (1999)66 who reported it in 3.5% men and 5.8% women in Haryana adults aged 16-70 years; this low prevalence was attributed to very low body-mass index in this population. Is hypertension prevalence increasing in India? Meta-analysis of previous Indian prevalence studies has shown that there has been a significant increase in hypertension in both urban and rural areas (Tables 5,6). This increase is associated with increasing mean systolic blood pressure levels. These studies were widely distributed in time and the methodologies were different. Observer bias cannot be excluded. We performed successive cross sectional studies to determine the change in blood pressure levels and hypertension prevalence in Jaipur.28 In 1995, the overall prevalence of hypertension in adults >20 years was 30% in men and 33% in women while in 2002 the age-adjusted prevalence was 30% in men and 34% in women (p=n.s.). These results show that over a short-term of 7 years there is no significant change in hypertension prevalence in an urban Indian population. The mean blood pressure levels also did not change although the blood pressure distribution curves showed increased variance suggesting more severe hypertension.67 Possibly a longer time is needed to effect changes in a given population. Prospective cohort studies within a population are needed to answer these questions as multiple factors are involved in hypertension variation in epidemiological studies. Hypertension increase in India correlates strongly with increasing CHD prevalence (r=0.88) and identifies it as a risk factor of importance.36 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SERUM CHOLESTEROL LEVELS AND DYSLIPIDEMIA | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The epidemiological studies of cholesterol measurement in India are hampered by lack of uniform assay technique which have resulted in large variation in measured levels. However, cholesterol levels measured by enzyme-based assays have shown an increase as seen in recent studies in urban populations (Table 7).68 Padmavati et al performed a study of dietary fat and serum cholesterol levels among industrial workers aged 18-60 years and in rural subjects aged 10-60 years in Delhi in 1958.22 Cholesterol was measured by the now obsolete chemical iron-reagent method. In subjects <40 years the average serum cholesterol was 168 mg/dl in industrial workers, 180 mg/dl in rural males and 174 mg/dl in rural females. In subjects >40 years the corresponding levels were 169.0, 192.4 and 182.4 mg/dl. In high-income subjects in Delhi mean cholesterol was 220 mg/dl in men <40 years and 256 mg/dl in >40 years. Barrington et al69 measured cholesterol in 279 subjects in South India to determine reference ranges. Mean levels were 185 mg/dl (range 115-255 mg/dl). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 7: Cholesterol Levels in India | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Gandhi estimated cholesterol lipoproteins in 201 urban Delhi subjects in 1982 using enzyme-based assays.70 The mean serum cholesterol was 157±29 mg/dl, 160±29 in males and 150±25 in females. Vashisth et al reported cholesterol lipoprotein levels in a case-control study of CHD patients in 1990.71 In the control group (n=186) mean cholesterol was 198 mg/dl. Reddy et al studied 1581 urban and 302 rural subjects aged 35-64 years in Delhi in 1992.72 The mean total cholesterol was 196±37 mg/dl in urban and 180+30 mg/dl in rural subjects. Gopinath et al reported lipoprotein cholesterol values in 1345 urban and 323 rural subjects aged 25-64 years in 1994.73 The mean total cholesterol in normal subjects was 199 mg/dl in urban and 177 mg/dl in rural subjects while the corresponding values in CHD patients were 210 mg/dl and 169 mg/dl in urban and rural subjects. Gupta et al reported a mean cholesterol level of 191±53 mg/dl in a cohort of 210 adult men of higher social class in Jaipur.74 In Rajasthan rural men the mean cholesterol was 165.2±37 mg/dl and in urban it was 175.8±43 mg/dl.75 Levels of high density lipoprotein (HDL) cholesterol have been reported in recent studies. Gandhi reported mean HDL cholesterol of 31±11 mg/dl in Delhi subjects in 1982.70 Gopinath et al reported HDL cholesterol of 56±13 mg/dl in urban and 51±9 mg/dl in rural subjects.73 Reddy et al reported higher HDL cholesterol in rural (43.9±7 mg/dl) than in urban subjects (42.7±9 mg/dl).72 Gupta et al reported HDL cholesterol of 44.1±13 in rural and 43.1±12 mg/dl in urban men (p=n.s.).75 Prevalence of dyslipidemias has not been adequately reported from India. Confusion exists about the population norms in absence of prospective studies. We used the US National Cholesterol Education Program guidelines to classify dyslipidemia among men in Rajasthan (rural=202, urban=199).34 High-risk and borderline-high cholesterol >200 mg/dl was in 24.2% and low HDL cholesterol (<35 mg/dl), which was the most prevalent dyslipidemia, in 30%.75 Reddy et al have reported prevalence of hypercholesterolaemia (>200 mg/dl) in industrial, urban and rural populations in Delhi.72 In men the prevalence was 30.9%, 36.8%, and 16.3% and in women it was 21.7%, 39.7% and 16.3% respectively. The increase in total cholesterol levels in urban Indians is in contrast to declining mean population cholesterol in USA. Secular tends in the age-adjusted mean serum cholesterol levels of adults aged 20-74 years have been reported. In 1962 the mean cholesterol was 217 mg/dl in men and 223 mg/dl in women. It was 214 mg/dl and 216 mg/dl in 1974, 211 mg/dl and 215 mg/dl in 1980 and 206 mg/dl and 208 mg/dl in 1991 for males and females respectively.76 A similar declining trend in mean cholesterol is seen in North American and Western European cohorts of Seven Countries Study.77 On the other hand in many developing countries of Asia, trends similar to India are seen. In China mean cholesterol are 175.2+38 mg/dl with a significant rural urban difference as in India. In Taiwan mean cholesterol levels range from 110 to 180 mg/dl and in Singapore it is 220 mg/dl.78 Increasing population cholesterol levels in India and a rural-urban gradient reiterates its importance in CHD epidemic in India. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
DIABETES AND INSULIN RESISTANCE | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The prevalence of non-insulin dependent diabetes mellitus (NIDDM), a strong risk factor for CHD, varies in different geographic regions and in different ethnic groups in India.79 At the turn of the century diabetes was uncommon in India and was present in higher socio-economic groups but it has been realised that Indians and south Asians as an ethnic group have a high risk of developing diabetes.80 The first authentic data on the prevalence of NIDDM in India was a result of a multicentric study conducted by the Indian Council of Medical Research in early seventies and reported a prevalence of 3.0% in urban and 1.3% in rural populations.79 Verma et al reported prevalence of known diabetes as 3.1% in an affluent locality of Delhi. Self reported diabetes was seen in 1.03% urban subjects and 0.19% rural subjects in our studies from Rajasthan.81 Ramachandran et al82 using the WHO criteria found a prevalence of 5% in an urban township in South India. In another study Ramachandran et al found an age-adjusted prevalence of 8.2% in urban populations and 2.4% in rural subjects in South India.82 This study, while showing a wide difference in the prevalence of diabetes in urban and rural populations, also highlighted the fact that diabetes was as common in urban Indians as in emigrant Indians.79 Prevalence of impaired glucose tolerance which may be a precursor of diabetes was equal in urban and rural subjects showing that Indians have a genetic predisposition for diabetes.82 In the Indian national diabetes survey the age-adjusted prevalence of diabetes diagnosed by oral glucose-tolerance test was 13.5% in Chennai, 12.4% in Bangalore, 16.6% in Hyderabad, 11.7% in Calcutta, 9.3% in Mumbai and 11.6% in Delhi.83 Insulin resistance state has been recognized as a risk factor of importance in CHD among South Asians living in Britain.79,84 Features of this syndrome include resistance to insulin-stimulated glucose uptake, central obesity, glucose intolerance, hyperinsulinemia, hypertension, increased VLDL triglyceride, decreased HDL cholesterol, increased IDL and small dense particles in LDL fraction. McKeigue et al84 explained the high incidence of CHD mortality in South Asians settled in Britain on the basis of a greater prevalence of diabetes as compared to the British (20% vs. 5%) and insulin resistance. He noted that mean fasting and post-load insulin levels were higher in South Asians than in Europeans, and the elevated insulin levels were generally associated with components of insulin resistance syndrome. Enas et al85 studied CHD and its risk factors in first-generation immigrant Asian Indians to the USA and reported that age-adjusted prevalence was three times more in Asian men as compared to Framingham Offspring Study (7.2% vs. 2.5%), this was associated with a greater prevalence of diabetes, low HDL cholesterol and hypertriglyceridemia- all components of insulin resistance syndrome. Many smaller studies report a high prevalence of insulin resistance in emigrant South Asians.86 Accompaniments of insulin resistance syndrome, viz., truncal obesity, low HDL cholesterol levels, high triglyceride levels and hypertension, are widely prevalent in India. Reddy et al72 reported high prevalence of truncal obesity (waist hip ratio (WHR); men >0.95, women >0.85) in both urban subjects (men 39.1%, women 70.9%) as well as rural subjects (men 32.4%, women 42.3%) in Delhi. Epidemiological studies in Indian rural men showed that prevalence of CHD was significantly more when WHR was >0.88.35 In urban men and women WHR >0.85 was associated with higher systolic and diastolic BP.87 Pais et al88 performed a case-control study of acute myocardial infarction in Bangalore and found that WHR was an independent coronary risk factor. Serum triglyceride levels, which is part of the insulin resistance syndrome, show a significant increase over the years in Indian urban populations (Table 8). Deepa et al89 determined insulin resistance in selected Chennai urban population using HOMA method. Prevalence of insulin resistance among adults was 11.2%. Mishra et al86 have recently reviewed the epidemiology of insulin resistance syndrome in India. Multiple small studies have reported that the prevalence of insulin resistance varied from 5% to 60% depending on the criteria used. This is more than in other ethnic groups. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 8: Triglycerides in Indian Urban Subjects | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Metabolic syndrome has recently been defined by the US National Institutes of Health using clinical and biochemical criteria that include truncal obesity, high normal blood pressure, impaired fasting glucose or diabetes, low HDL cholesterol and borderline high triglycerides.90 Using these criteria, in an urban Indian population the age-adjusted prevalence has been reported as 24.9%, 18.4% in men and 30.9% in women.91 This prevalence is comparable to that in developed countries where the prevalence has been reported as about 25%.92 An excess of this syndrome in native Indians needs more studies although it is speculated that this may be a major coronary risk factor in Indians.78,86,91 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OTHER RISK FACTORS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lipoprotein(a) consists of an LDL bound by a disulfide bond to apo(a). Apo(a) is a hydrophilic glycoprotein of the plasminogen family. These unique features give Lp(a) potential atherogenic and thrombogenic roles. Serum levels of Lp(a) correlate directly with the presence, extent, severity and lesion score on coronary angiogram, and family history of premature CHD. In a study in Singapore, mean Lp(a) levels were three-fold higher in Asian Indians as compared to Singapore Chinese (20 mg/dl vs. 7 mg/dl).93 The Coronary Artery Disease in Indians Study94 found that Lp(a) levels in Indians were significantly greater than Caucasians. Proportion of persons with Lp(a) >30 mg/dl was 25% in South Asians, 19% in Caucasians and 8% in Mexican Americans. In a case-control study, Bhatnagar et al found that Lp(a) levels were high in South Asians living in Britain as well as in their siblings in Punjab.95 Many small case-control studies have emphasised the importance of Lp(a) in India96 but prospective studies need to be performed. Small studies of other risk factors for atherosclerosis have been done in India. Case-control studies of genetic influences, antioxidant defense mechanisms, thrombogenic risk factors (fibrinogen), and infections (cytomegalovirus) have been performed. Environmental pollution can influence CHD prevalence. Thus, there is a need for more epidemiological and case-control studies to determine the importance of these and other coronary risk factors. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
GENETIC FACTORS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
More than 100 genes have been identified to be important in evolution of atherosclerosis and its complications such as acute coronary syndromes and stroke (Table 9). A large Japanese case-control study recently reported that connexin-37, plasminogen-activator inhibitor type-1, and stromelysin genes may prove reliable in predicting risk of myocardial infarction.97 The European GENECARD sib-pair analysis study reported that classical remediable risk factors (smoking, hypertension, lipid abnormalities, and diabetes) are highly prevalent in familial premature CHD and a major contribution of genes acting in absence of these risk factors was unlikely.98 In India some case-control studies have reported influence of specific genes using a case-control design. No correlation was found for angiotensin converting enzyme genotypes (ACE gene polymorphism),99 methylene tetra-hydro folate reductase (MTHFR) gene,100 or various genes of apolipoprotein E.101 Using mitochondrial genetic analyses technique Roychaudhary et al reported that there was no fundamental dissimilarities among various Indian tribals and other subgroups.102 To determine genetic influence is cumbersome and may not yield positive conclusions in population studies.103 However, larger studies are needed to more specifically determine the genetic influences among Indians and other south Asian groups. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 9: Genes and Polymorphisms Implicated in Coronary Heart Disease | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
URBAN-RURAL DIFFERENCES IN CORONARY RISK FACTORS | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The study of urban-rural and geographic differences can provide useful information regarding pathogenesis of CHD in an ethnic group.78,104 The prevalence of CHD is low in rural populations of India and has not changed significantly over the years.12 The prevalence is significantly more and increasing in urban Indians. To examine whether there are important risk factor differences in urban as compared with rural populations, some studies have been performed. In hospital based studies, a higher prevalence of CHD in urban Indians was initially reported in 1950's. Epidemiological studies in Agra,21 Delhi22 and Chandigarh24 in1960s confirmed the high prevalence in urban subjects.12 In a case-control study, Bordia et al (1974),105 determined prevalence of coronary risk factors in urban and rural subjects. In rural subjects smoking was a more important risk factor as compared to urban subjects where sedentary lifestyle, obesity and hypercholesterolaemia were important. Gupta et al (1975),29 Chadha et al (1997),106 Reddy et al (1997),72 and Gupta et al (1997)81 performed comparison of CHD and risk factor prevalence in urban and rural populations of Northern India using similar epidemiological tools (Figure 3). CHD prevalence in urban subject was twice that of the rural. Greater prevalence of major coronary risk factors- sedentary lifestyle, obesity, truncal obesity, hypertension, high cholesterol, low HDL cholesterol, and diabetes was observed in urban subjects in these studies. This has important public health connotation as control of these risk factors could lead to control of the cardiovascular disease epidemic in India.8 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Figure 3: Urban-rural differences in coronary risk factor prevalence in Indian men. Data from the Jaipur Heart Watch-1 Study in Rajasthan.79 Similar results have been reported in studies from Haryana and Delhi by Gupta et al, 22 Chadha et al,25 Reddy et al72 and Gopinath et al.73 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SURVEILLANCE STUDIES | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
There in a need to develop models for cardiovascular surveillance in India.107 To be applicable on a large scale these have to be a user friendly, inexpensive and representative of the population being studied. Data must be collected, analysed and used in a regular and systematic way. The interval between the episodes of data collection may vary depending on the different measurements involved and the infrastructure available to conduct surveys. Surveillance involves commitment to data collection on an ongoing basis, as well as the use of data for public health. Four considerations guide the choice of risk factors for inclusion in surveillance activities: (i) the significance of the risk factor for public health in terms of nature and severity of the morbidity, disability and mortality of the non-communicable diseases with which it is associated; (ii) cost of collecting valid data on a long-term and repeated basis; (iii) availability and the strength of evidence that intervening on the risk factor will change it and reduce the non-communicable disease in the community; and (iv) ability to measure the risk factor burden uniformly in different settings to ensure comparability and to measure changes over time. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 10: Age-adjusted Coronary Risk Factor Prevalence in an urban Indian population in the years 1995 (JHW-1) and 2002 (JHW-2)28 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
To determine trends of coronary risk factors, as part of cardiovascular risk surveillance, we performed successive surveys in Jaipur urban population, Jaipur Heart Watch-1 in 1993-9426 and Jaipur Heart Watch-2 in 2000-01.28 Subjects aged >20 years in randomly selected municipal blocks using Voters' Lists for enrolment were examined. We obtained details of smoking or tobacco use, physical activity, hypertension, diabetes and dyslipidemias. In the first study 2112 subjects (1415 men, 797 women) were examined. In the second study 1123 subjects (550 men, 573 women) were examined. Age-standardised comparison of coronary risk factors in JHW-1 and JHW-2 is shown in Table 10. The table shows that the prevalence of smoking, leisure-time physical inactivity, truncal obesity, and hypertension have not increased significantly over a period of about eight years. There is a significantly increased prevalence of diabetes (diagnosed by history), obesity, and all the types of dyslipidaemias in both males and females. These results can not be compared with previous Indian studies. There is no study that has systematically examined changes in multiple coronary risk factors in a similar population over a time period. Ramachandran et al82 reported an increasing prevalence of impaired glucose tolerance and diabetes in Chennai urban residents in south India. Secular trends in coronary risk factors are available from various cohorts of Seven Countries Study.77 Koga et al reported that in years 1958, 1977 and 1989 in a Japanese rural population there was a significant increase in total cholesterol levels (150+41, 161+32 and 188+37), overweight and obesity (8%, 11%, 18%), and diastolic hypertension (8%, 20%, 13%) while the prevalence of smoking and isolated systolic hypertension declined. In rural and urban Yugoslavian cohorts there was a declining trend in cigarette smoking on one hand and increase in mean levels of systolic blood pressure and cholesterol on the other associated with an increase in consumption of meats, eggs, dairy products, fats and oils and desserts. In urban areas of Greece from 1968 to 1988 there was increase in body-mass index, blood pressure, cholesterol levels and diabetes, but the dietary consumption of vegetables and fruits, olive oil and bread also increased associated with a decline in CVD mortality. On the other hand in developed countries cohorts of the Seven Countries Study in Netherlands, Italy, North America and Finland there has been a decline in CHD mortality associated with a declining trend in smoking, hypertension, and cholesterol levels.77 Increasing population levels of major coronary risk factors in India highlights importance of universally tried and tested measures in controlling the CHD epidemic.38 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
NATIONAL ISSUES | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
WHO estimates that death attributable to cardiovascular diseases have increased in parallel with the expanding population in India. Cardiovascular diseases now account for a large proportion of disability adjusted life years lost in India as well as other developing countries.1-4 The CHD rate in India is expected to rise in parallel with the increase in life expectancy secondary to increases in per capita income and declining infant mortality. The average life expectancy has increased from 41 years in the years 1951 to 1961, to 61.4 years in the years 1991 to 1996 and is projected to reach 72 years by 2030, which could lead to large increases in CHD prevalence. By contrast, in the UK and Canada, although the CHD mortality rate of Indians compared with other populations remains high, a decline in CHD have been observed over the past 10 years. These data indicate that the high rates of CHD with economic changes are reversible and perhaps even avoidable. Therefore, lessons learnt from migrant Indians may be helpful in developing prevention strategies for the Indian subcontinent.8,78,80 Because of the importance of cardiovascular disease and CHD in overall mortality statistics in India it is important that a national surveillance program be started. This is all the more important because CHD is a preventable diseases and mortality from acute coronary events can be delayed or even prevented by suitable primary and secondary prevention effort.108 Sadly, the initiative is lacking in India due to a variety of social and economic reasons that are determinants of improper health behaviour among Indians.76 (Table 11). |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 11: Determinants of Health Behaviour among Indians | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Periodic workshops for development of strategies to tackle the growing menace of cardiovascular diseases should be organised at national level. Following are the suggested objectives for the meetings: | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
International agencies including the WHO have recommended that a national surveillance system for cardiovascular diseases should be developed.107,109 American National Institutes of Health provides two key issues in development of surveillance programs: (i) provide adequate data to monitor levels and trends in population subgroups, as defined by race/ethnicity, socioeconomic status and geography; and (ii) allow differences within the population in mortality, morbidity, incidence, and risk factor levels to be better understood. Increasing burden of non-communicable disease in South Asia has attracted attention of international policymakers also.4,110 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Table 12: Information sources for surveillance | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
In India there is a serious lack of standardised data for policy makers. There has been no national effort to assess the burden of non-communicable diseases especially cardiovascular diseases in the past. Prevalence studies as reported in the earlier part of this article are sporadic and are not driven by a national policy but are result of efforts by an individual investigator. There is an urgent need for a national surveillance system for determining the extent, burden and trends of different cardiovascular diseases in this country. A system that incorporates practitioners of medicine working with the community at various levels of health-care is suggested. Various information sources for surveillance are shown in Table 12. A serious effort is required in India to collate this sort of data for cardiovascular diseases in different states of the country. This should be done along with the existing national health services framework. Efforts to create a new network are under way but are likely to be more expensive and may not be an immediate solution to the problem. We believe that cardiovascular diseases have been long neglected in this country and unless a serious surveillance and prevention effort is initiated as quickly as possible we shall see more numbers of our young people succumb to this deadly malady. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
REFERENCES | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|